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Meaningful analysis of citrus aroma required a multidimensional approach. 
First, organoleptic evaluation provided information on the product that could 
be equated to consumer acceptability. Secondly, gas chromatographic-mass 
spectral analysis yielded both identity and quantitation of the aroma consti- 
tuents. Thirdly, computational profiling of organoleptic data and instrumental 
data were used to construct multidimensional plots that separated samples with 
different compositions and flavor attributes into several categories. Quantitative 
descriptive analysis (QDA) utilizing linear numerical scores were used to quantify 
12 aromatic descriptors, and various pattern recognition routines of ARTHUR 
were applied to evaluate the data. A panel separated samples into categories 
described as fruity, fresh orange-like, flowery herbal-like, butter oil-like, pepper- 
like and fruity tea-like. Data treatment, depicted by nonlinear mapping (NLM), 
resolved these samples into categories with differing off-flavor and non-off-flavor 
attributes. Feature weightings (variance and Fisher) indicated that the descriptor 
'overall quality' had the most discriminating power for sensory evaluation of 
good quality aroma samples. A separate ARTHUR analysis of gas chromato- 
graphic data clearly separated aroma samples into groupings that were related 
to the categories previously separated by an aroma panel and depicted by 
NLM. Ethyl acetate, acetal and ethyl butyrate were high variance- and Fisher- 
weighted GC features. 

INTRODUCTION 

Considerable effort has been expended in the past to 
develop a methodology capable of utilizing instrumen- 
tal data to supplement or replace organoleptic sensory 
analysis for performing quality analysis of foods and 
beverages. Because of the complex nature of most bev- 
erages, simple mathematical routines as regression 
analysis have little chance of  success. With the advent 
of powerful pattern recognition programs (Harper et 
al., 1977), a closer look at the complex matrix of a fruit 
juice beverage using instrumental data is more realistic. 
A pattern recognition program consists of mathematical 
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analysis of the data and mathematical modeling. Most 
programs can be 'taught' to recognize a pattern or 
patterns by analyzing a 'training' or previously classi- 
fied set of data. These programs can also analyze data 
independently, to determine if any patterns exist. 

Significant results have been achieved in applying 
pattern recognition to gas chromatographic data for 
classification of cheese varieties (Aishima & Nakai, 
1987), stress-induced changes in coffee aroma (Roberts 
& Bertsch, 1987), and essential oils from different vari- 
eties of hops (Stenroos & Siebert, 1984). Applications 
in the citrus industry include the detection of adultera- 
tion of orange juice (Nikdel et al., 1988), the deter- 
mination of geographical origins of frozen concentrated 
orange juice (Bayer et al., 1980), the classification of 
navel and Valencia orange essence oils (Mayfield et al., 
1986), and the identification of quality factors in orange 
juice (Rouseff & Nagy, 1987). 



236 James C C Lin, Steven Nagy, Martin Klim 

The quality of  natural orange aroma (NOA), also 
known as aqueous phase orange essence, is commonly 
accepted as a very important component in the produc- 
tion of  good frozen concentrated orange juice (FCOJ) 
and in orange juices reconstituted from concentrates. 
Quality NOA is also used as an additive to impart a 
natural citrus flavor to synthetic drinks, as well as 
other food products. Factors such as fruit maturity, 
orange cultivar, and processing methods affect the 
quality and strength of  NOA (Redd et al., 1992). The 
objectives of this study were to establish a method to 
define commercially produced NOA by application of a 
pattern recognition program, and to investigate the re- 
lationship and the classification performance between 
subjective sensory evaluation and objective GC analysis. 
Many of  the  statistical routines of pattern recognition 
used in our study are defined in a book by Burgard and 
Kuznicki (1990). 

M A T E R I A L S  A N D  M E T H O D S  

Sample preparation 

Table 2. Flavor components of natural orange aroma: reported 
literature concentration levels and prepared concentration levels 

for the sensory panel 

Flavor Reported concentration Prepared 
component concentration 

A a B b 

Ethanol (base) 13% 
Acetaldehyde 600 ppm 
Methanol 0.5% 
1-Propanol 100 ppm 
Ethyl acetate 100 ppm 
Acetal 70 ppm 
Hexanal trace 
Ethyl butyrate 50 ppm 
trans-2-Hexenal trace 
o-Limonene 200 ppm 
Linalool 
cis-3-Hexenol 
Methyl butyrate 
4-Terpinenol 
a-Terpineol 

NC ~ 14% 
NC 600 ppm 
NC 0.5% 

40 ppm 100 ppm 
100 ppm 100 ppm 
45 ppm 70 ppm 
40 ppm 40 ppm 
65 ppm 60 ppm 
40 ppm 40 ppm 
10 ppm 200 ppm 
85 ppm 80 ppm 
10 ppm 10 ppm 
5 ppm 5 ppm 

20 ppm 20 ppm 
20 ppm 20 ppm 

Johnson and Vora, 1983. 
h Moshonas and Shaw, 1984. 
' NC-identified but not calculated. 

Sixteen batches of  natural orange aroma were collected 
from six flavor houses in central Florida and labeled A 
through P (Table 1). The samples were stored in 200-ml 
amber flasks at 2°C and warmed to ambient tempera- 
ture when used. Basic compositional information was 
supplied by the flavor houses for their respective 
products. Fifteen components identified in NOA were 
selected for preparing solutions for sensory panel use 
(Table 2). Selection of compounds was based on previous 
studies by Johnson and Vora (1983) and Moshonas 
and Shaw (1984) and by our own extensive evaluation 
of  over 100 different commercial NOA samples. All 
components were dissolved in a water base containing 
14% ethanol. 

Table 1. Commercial natural orange aroma: source and label 
designations 

Commercial Sample Sample Test 
flavor house number code Category set 

I 1 A 1 
I 2 B 
I 3 C 2 
I 4 D 
I 5 E 3 
I 6 F 4 
II 1 G 5 
III 1 H 6 
IV I I 
IV 2 J 
IV 3 K 7 ~ 
IV 4 L 7 ~ 
IV 5 M 8 
IV 6 N 
V 1 O 9 
VI 1 P 

X 

X 

X 
X 

X 

X 

a Same commercial product code but of different lot numbers 
from the same flavor house (IV). 

Sensory evaluation 

A sensory panel consisting of eight members was selected 
from the staff at the Citrus Research and Education 
Center and the training of  panellists was conducted 
for two hours each week for three months prior to 
evaluating the NOA samples. The training consisted of 
recognition of  selected aroma components in the 14% 
ethanol-water base, selection of  specific aroma descrip- 
tors, development of a report form, and practice 
sessions with NOA samples. Emphasis was placed on 
reproducibility of  perception for strength and quality. 
The quantitative Descriptive Analysis (QDA) report 
form (Fig. 1) included the aroma descriptors developed 
during training plus a blank line for any unusual 
aromatic characteristic, such as flowery herbal or fruity 
tea-like, that were used to describe qualities of some 
samples. Panellists were asked to draw a vertical line in 
any of  the six segments to indicate the intensity of  each 
characteristic. The left-most tick mark was assigned a 
score of 1 (equal of  nondetectable), whereas the right- 
most tick mark was assigned a score of  7 (equal to an 
extremely strong aroma impact). 

Gas chromatographic analysis 

The NOA samples were analyzed with a Hewlett- 
Packard 5890A gas chromatograph (Avondale, PA) 
equipped with a flame ionization detector. The column 
was a 30-m fused silica (0.32mm i.d.) coated with 
RTX-5 (Restek, Bellefonte, PA) with a 1.0 pm thick- 
ness. The oven temperature was initially held at 32°C for 
3 min and then programmed at 7.5°C/min to 185°C 
and held for 2 min. The injector and detector tempera- 
tures were 220°C and 260°C, respectively. The carrier 
gas was hydrogen with a linear velocity of  53.5 cm/s, 
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SENSORY EVALUATION OF CITRUS AQUEOUS AROMA Tester. Sample Code: - -  

Apply the quantitative descriptive analysis method to evaluate the aqueous aroma sample. Indicate the specified intensity of 
the named cheracterit, tics by placing a vertical line. (After completing the entire questJonn!ire, please write down the score in 
front of each named characteristics. Note: "non-detectable = 1, extremely strong = 7") 

Grassy Green 

Ethereal 
Fruity 

Peel Oil 
(Citrosy) 

Alcohofic 

non- slight- moderate- extremely 
detectable slight moderate moderate strong strong strong 

I 

I 

Acetaldehyde 
Like Note 

Floral-Woody 

Musty (Stale, 
Hay-like) 

Pepper-like 

Buttery, 
Oil-like 

Overall 
Strength 

strong less than better than very 
reject reject acceptable acceptable acceptable good excellent 

I I I I I I Overall l 
quality 

COMMENTS; 

Fig. 1. Quantitative descriptive analysis report form. 

and makeup gas flow to the detector was dry air at 
28 ml/min. Samples of 1 /zl were manually injected and 
split at 50:1 ratio. An internal standard, 2-heptanol, 
was used for quantitation. The detector output was 
processed with a Hewlett-Packard 3393A computing 
integrator and transferred to an AT clone computer 
utilizing the Hewlett-Packard File Server program. 
Final data processing was done using a spreadsheet 
(Twin, Mosaic Software, Cambridge, MA) to prepare 
the data for input to a pattern recognition program. 

was a Restek RTX-5 capillary column (0.25 mm i.d. × 
30 m long). The gas chromatographic programming 
was as follows: initial temperature at 25°C for 3 min, 
temperature program from 25°C to 220°C at 6°C/min, 
and hold at 220°C for 5 min. Carrier gas (hydrogen) 
flow was 24 cm/s. Mass spectral scanning was con- 
ducted at 0-7 s/dec under the following parameters: 
2 KV accelerating voltage, 70 eV ionization voltage, 
200°C source temperature and GC-MS transfer line 
was at 210°C. 

Gas chromatography--mass spectral identification Pattern recognition program 

Mass spectral work was conducted in a gas chroma- 
tograph-mass spectrometer system consisting of (a) 
Carlo Erba Fractovap 4200 gas chromatograph 
retrofitted with a J & W on-column injector (J & W 
Scientific, Folsom, CA) and a Hewlett-Packard split- 
splitless injector operating at a 10:1 split ratio, (b) a 
Kratos MS 25 magnetic sector, double focusing, mass 
spectrometer, and (c) a Taknivent Vector 1 data 
acquisition system (Teknivent, St Louis, MO). Mass 
spectral searches were performed with both the Wiley/ 
NBS and National Institutes of Science and Technology 
(NIST) mass spectral data bases. The capillary column 

The sensory QDA and GC data were analyzed using 
ARTHUR (version 1981, Infometrix Seattle, WA) 
running on a VAX 360 computer. Sample classification 
was analyzed by K-nearest neighbor (KNN) and by 
statistical isolinear multicategory analysis (SIMCA). 
Nonlinear mapping (NLM) and principal component 
analysis (PCA) were used for data display and dimen- 
sional analyses (Burgard & Kuznicki, 1990). SAS/ 
GRAPH (SAS Institute, Cary, NC) was used for G-3D 
(three-dimensional) plots. More descriptive of the tech- 
niques of discriminant analyses may be found in the 
book by Burgard and Kuznicki (1990). 
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Table 3. Data processing flow chart of ARTHUR analysis 
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RESULTS AND DISCUSSION 

The application of  full-featured pattern recognition 
program to a set of data required a logical approach. 
First, an unsupervised learning mode was used to 
determine the existence of  natural class characteristics. 

Secondly, the supervised learning mode was used to 
process a training set of  data (data for which some 
of  the characteristics to be studied were known and 
quantifiable), followed by a test set of  data to deter- 
mine the validity of  the training. Finally, the set of  
data to be analyzed was processed and the results 

Table 4. Principal component analysis (PCA) of the autoscaled variance- and Fisher-weighted sensory QDA data a 

Variance-weighted PCA 

Eigenvector Variance preserved 
number 

Eigenvalue 

Fisher-weighted PCA 

Variance preserved 

Each Total Eigenvalue Each Total 

1 9.765 26-3 
2 6.194 16.7 
3 5.566 15.0 
4 4-498 12.1 
5 3.804 10.3 
6 1.638 4.4 
7 1.538 4.1 
8 1.133 3-1 
9 0.801 2.2 

10 0.717 1.9 
11 0-555 1.5 
12 0-502 1-4 
13 0.386 1.0 

26-3 33.980 50.4 50.4 
43-0 13.490 20-0 70.4 
58.1 10.530 15.6 86.0 
70.2 6.751 10.0 96.0 
80-4 1.222 1-8 97-8 
84.9 0.727 1.1 98.9 
89.0 0.393 0.6 99.5 
92.1 0.147 0.2 99.7 
94-2 0-065 0.1 99.8 
96.2 0.045 0.1 99.9 
97-7 0.032 5 0.0 99.9 
99.0 0.029 0.0 100.0 

100.0 0.015 0.0 100.0 

Both variance- and Fisher-weighted PCA were previously autoscaled. 
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PCA3 

0.97 

0.01 ~ ~ 7  . 0.66 

- 0 . 4 7  

1.ol / -  -o.25 PCA2 

PCA1 -0.60 

Fig. 2. Principal component analysis (PCA) of autoscaled variance-weighted QDA data; three-dimensional plot of first three 
eigenvectors. Sample symbols are as follows: club = sample A, diamond = sample C, cube -- sample E, flag -- sample F, 

square -- sample G, spade = sample H, balloon = samples L and K, triangle = sample M, star -- sample O. 

reviewed. Table 3, a data processing flow chart, was de- 
veloped on the basis of our data structure and working 
experience. 

Sensory QDA 

The purpose of feature (transformed variable) weight- 
ing in sensory analysis is to provide a measure of the 
discriminating ability of a variable (specific aroma 
note, see Table 5 below) to separate NOA samples into 
categories. Practical consequences of feature selection 
include a potential reduction in the number of mea- 
surements that need to be made for sample charac- 
terization, an indirect evaluation of experimental design, 
and an improved understanding of the basic chemical 
and sensory differences between NOA samples. Two 
statistical procedures by which this may be accomp- 
lished are variance weighting and Fisher weighting. The 
variance weight for categories is calculated as the ratio 
of the intercategory variances to the sum of the intra- 
category variances, whereas the Fisher weight for cate- 

PCA3 

gories is calculated as the ratio of the difference 
of category means to the sum of the intracategory 
variances (Sharaf et al., 1986). The statistical routine 
which best differentiates categories is determined by 
experimentation. 

Table 4 reveals the results of principal component 
analysis (PCA) of the autoscaled variance- and Fisher- 
weighted sensory data. The first three eigenvectors 
explained 58-1% and 86-0% of the data set, respectively, 
Figures 2 and 3 are three-dimensional (G-3D) plots of 
variance- and Fisher-weighted sensory data. The vari- 
ance-weighted plot (Fig. 2) reveals more scattering 
among categories than the Fisher-weighted plot (Fig. 3). 
However, Fisher-weighted plots of samples E, G, and 
D were tightly grouped but lacked separation of the 
respective groups. A review of the feature weights 
(Table 5) reveals that off-flavor notes such as buttery 
oil-like, flowery herbal, and fruity tea-like have heavier 
weightings than other aroma characters. Since unusual 
off-flavor notes evoke a stronger sensory response, the 
heavier weightings are to be expected. Overall quality, 

0.82 -- > 

- 0 . 3 7  - -  

1.10 

~0~97 

~ ~ ~ ~ ~ ; j  - ¢ r ~  -0.23 PCA2 2.49 1.51 
I ~'----,----L~ 0.53 -0.90 

PCA1 -045 
Fig. 3. Principal component analysis (PCA) of autoscaled Fisher-weighted QDA data; three-dimensional plot of first three eigen- 
vectors. Sample symbols are as follows: club = sample A, diamond = sample C, cube = sample E, flag = sample F, square = sample 

G, spade -- sample H, balloon = samples L and K, triangle = sample M, star = sample O. 
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Table 5. Results of feature weighting programs on sensory ODA data 

Variance weights 

Old feature New feature 

No. Description No. Description Weight 

Fisher weight 

New feature 

No. Description Weight 

1 Green grassy 9 Buttery, oil 2.545 
2 Ethereal fruity 10 Herbal flowery 2.239 
3 Peel oil 11 Fruity, tea 2.075 
4 Alcoholic 13 Overall quality 2.004 
5 Acetaldehyde-like 8 Pepper-like 1-950 
6 Floral, woody 2 Ethereal fruity 1.567 
7 Musty, hay 6 Floral woody 1.460 
8 Pepper-like 7 Musty, hay 1.419 
9 Buttery, oil 12 Overall strength 1.253 

10 Herbal, flowery" 1 Green grassy 1.198 
11 Fruity, tea a 3 Peel oil 1.175 
12 Overall strength 5 Acetaldehyde-like 1.131 
13 Overall quality 4 Alcoholic 1-094 

10 Herbal flowery 5.529 
11 Fruity, tea 3.058 
9 Buttery, oil 2-885 
8 Pepper-like 2.384 

13 Overall quality 1.313 
2 Ethereal fruity 0.671 
6 Floral woody 0.561 
7 Musty, hay 0.468 

12 Overall strength 0.256 
1 Green grassy 0.195 
3 Peel oil 0.173 
5 Acetaldehyde-like 0.126 
4 Alcoholic 0.087 

a Unusual aroma characteristics incorporated on the blank line of Fig. 1. 

Y = 2[NLM] 

Butter Oil-Like 

9 

Flowery Herbal-Like 

Pepper-Like 

77 7 7 7 
7 
77 7 f 

6 6 6 
6 

Fruity Tea-Like 

X = II'NLM] 

Fig. 4. Nonlinear mapping program of Fisher-weighted data vectors. 

Table 6. The summary of K-Nearest Neighbor (KNN) on the autoscaled variance-weighted and Fisher-weighted sensory QDA data 
vectors of the training set. 

Data vectors K-NN I-NN 3-NN 4-NN 5-NN 6-NN 7-NN 8-NN 9-NN 10-NN 

Variance-weighted Total missed 17 17 16 15 15 12 14 14 14 
% Correct 75.7 75.7 77.1 78.6 78.6 87.9 80.0 80.0 80.0 

Fisher-weighted Total missed 10 13 15 12 14 15 11 11 13 
% Correct 85.7 81.4 78-6 82-9 80.0 78.6 84.3 84.3 81.4 
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TaMe 7. The SlMCAMisclassifieationMatrix ofthevarianee-weightedseasoryQDA data vectors o f t h e ~ a i n i n g s e ~  

Computed Class 

True class l 2 3 4 5 6 7 8 9 

1 6 0 0 0 0 0 0 0 0 
100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

2 0 6 0 0 0 0 0 0 0 
0.0 lO0.O 0.0 0.0 0.0 0.0 0.0 0-0 0.0 

3 0 0 6 0 0 0 0 0 0 
0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 

4 0 0 0 8 0 0 0 0 0 
0.0 0.0 0.0 100.0 0.0 0.0 0.0 0-0 0.0 

5 0 0 0 0 7 0 0 0 0 
0-0 0.0 0-0 0.0 100.0 0.0 0-0 0.0 0.0 

6 0 0 0 0 0 8 0 0 0 
0.0 0.0 0.0 0.0 0.0 100.0 0-0 0-0 0.0 

7 0 0 0 0 0 0 15 0 0 
0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 

8 0 0 0 0 0 0 0 6 0 
0.0 0.0 0.0 0.0 0.0 0.0 0.0 1~.0 0.0 

9 0 0 0 0 0 0 0 0 8 
0.0 0.0 0.0 0.0 0-0 0.0 0.0 0.0 100.0 

a Percent correct: total 100.0; average 100.0. 

as noted, appears to be an important discriminating 
power, whereas peel oil, acetaldehyde-like and alcoholic 
are seen as less important qualities. 

The non-linear mapping program (NLM) of  the 
Fisher-weighted data vectors is shown in Fig. 4. N LM 
is another display technique which preserves interpoint 
distances to the extent possible when projecting into a 
two-dimensional space for plotting. By encircling the 
various nine categories, Fig. 4 reveals good separation 
for off-aroma categories, as witnessed near the outside 
perimeters, but considerable overlap for the more 
pleasant, non-offensive categories near the center. This 
observation suggests that by applying NLM programs, 
good quality natural orange aroma will more likely be 
found in the central region of  the plot, whereas aromas 
with off-flavour, more offensive notes will be found 
near the perimeters of  the NLM plot. 

K N N  classification of  the sensory QDA data vectors 
of  the training sets (see also Table 1) is summarized in 
Table 6. The best results were for the 7-NN result 
(87.9% correct) for variance-weighted data and 1-NN 
result for Fisher-weighted data (85.7% correct). How- 
ever, the SIMCA results of  the variance-weighted data 
vectors for the training sets resulted in '100% correct' 
responses (Table 7). Similar application of  SIMCA 
analysis to the Fisher-weighted data vectors yielded a 
'96-8% correct' (one class missed) response. 

The superior performance of SIMCA over K N N  in 
sample classification was obvious; similar observations 
have been reported elsewhere (Stenroos & Siebert, 
1984; Mayfield et aL, 1986). Those authors indicated 
that SIMCA analysis was the most consistent; it 
yielded satisfactory results for sample classification 
when compared to other discrete classification methods. 
Table 8 reveals overall classification by SIMCA on the 
test sample sets. Samples D, I, J, and P (see also Table 1) 

were effectively classified into categories 2, 7, 7, and 3, 
respectively. Sample B was not accurately classified. 
Since variance-weighted data vectors demonstrated 
100% success with the training sets (Table 7), it was a 
logical assumption that, based upon its prediction, 
sample B had a flavor property intermediate between 
categories 1 and 2 (i.e., samples A and C). This was a 
strong indication that samples A, B, and C (categories 
1, 2, and 3) might have a continuous (non-differen- 
tiating) flavor property rather than belong to distinct 
categories. 

Table 8. The SIMCA classification results on the autoscaled 
variance-weighted and Fisher-weighted sensory QDA data 

vectors 

Test sample Variance-weighted Fisher-weighted 

B 4/8 CATEGORY #1 2/8 CATEGORY #1 
4/8 CATEGORY #2 4/8 CATEGORY #2 

1/8 CATEGORY #3 
1/8 CATEGORY #4 

D 1/8 CATEGORY #1 6/8 CATEGORY #2 
7/8 CATEGORY #2 1/8 CATEGORY #3 

1/8 CATEGORY #5 

I 2/8 CATEGORY #5 1/8 CATEGORY #1 
6/8 CATEGORY #7 1/8 CATEGORY #5 

6/8 CATEGORY #7 

N 

1/8 CATEGORY #1 2/8 CATEGORY #1 
1/8 CATEGORY #2 1/8 CATEGORY #5 
6/8 CATEGORY #7 5/8 CATEGORY #7 

1/8 CATEGORY #2 4/'8 CATEGORY #2 
1/8 CATEGORY #5 1/8 CATEGORY #5 
6/8 CATEGORY #8 3/'8 CATEGORY #8 

P 7/8 CATEGORY #3 1/'8 CATEGORY #2 
1/8 CATEGORY #8 7/8 CATEGORY #3 
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Fig. 5. A typical chromatographic profile of natural orange aroma. Peak identifications: (1) acetaldehyde and methanol, 
(2) ethanol, (3) acetone, (4) 1-propanol, (5) 2-methyl-3-buten-2-ol, (6) ethyl acetate, (7) 2-methyl-l-propanol, (8) 1-butanol, 
(9) l-penten-3-ol, (10) ethyl vinyl ketone, (l l) methyl butyrate, (12) acetal, (13) 3-methyl-l-butanol, (14) 2-methyl-l-butanol, 
(15) not identified, (16) 1-pentanol, (17) 2-penten-l-ol, (18) cis-3-hexenal, (19) hexanal, (20) ethyl butyrate, (21) trans-2-hexenal, 
(22) cis-3-hexen-l-ol, (23) 1-hexanol, (ISTD) 2-heptanol, (24) not identified, (25) octanal, (26) 1-octanol, (27) cis-linalool oxide, 
(28) trans-linalool oxide, (29) linalool, (30) ethyl-3-hydroxyhexanoate, (31) 4-terpineol, (32) a-terpineol. ISTD -- Internal standard. 

Gas chromatographic analysis 

A typical gas chromatogram of  natural orange aroma 
and peak identifications are noted in Fig. 5. Thirty 
peaks were identified by GC-MS.  The first peak was 
not resolved by capillary gas chromatography but was 
previously resolved and identified with a 5% Carbowax 
20M packed column and was shown to contain acetalde- 
hyde and methanol. Cluster analysis of  the 32 flavor 

components of  the NOA training set samples is shown 
in the dendrogram of  Fig. 6. The groups were clearly 
separated (less than 0.65 similarity), except for G and E 
at 0.82 similarity. Table 9 lists the eigenvalues of  the 
PCAs of  the autoscaled GC data vectors. The first 20 
eigenvectors explained 100% of  the total variance, 
whereas the first three explained 82.5% of  the total 
variance. A three-dimensional plot of  the first three 
eigenvectors is given in Fig. 7. Samples I, J, K, and L 

O. 

0 .1 ,  
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0.3 
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0J 
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> 
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L 
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1.O 
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Fig. 6. Dendrogram of cluster analysis of 32 flavor components of natural orange aroma training samples. 
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(see also Table 1) defined a specific group. Groups A 
and B, H and M, E and F were not clearly separated 
based upon the first three principal components. How- 
ever, samples C, D, O and P had sufficient separation 
for classification. Plotting the principal components in 
two or three dimensions is generally considered a dis- 
play technique but can be used as a classification tool if 
the first two or three eigenvalues contain a sufficiently 
high percentage of the total variance to produce unam- 
biguous separation. Headley and Hardt (1989) applied 
the first two principal components for classification of 
whiskies using Ein*Sight, a personal computer version 
of a pattern recognition program (Infometrix, Seattle, 
WA). KNN, SIMCA and other classification techniques 
were not available. 

Results of NLM processing of autoscaled GC data 
are shown in Fig. 8. Unlike the sensory QDA data, a 
clear and distinct separation of the individual cate- 
gories was observed. This might be due to the objective 
nature of the GC data when compared to the subjective 
aspect of sensory QDA data. The results of feature 
weighting (Table 10) indicated that acetal (P12) and 
ethyl acetate (P6) are the two compounds most respon- 
sible for categorizing samples. Methyl butyrate (Pll), 
a-terpineol (P32), 1-propanol (P4), acetone (P3), and 
cis-3-hexenal (P18) were among the least important for 
category placement. 

Table 11 shows the classification of variance-weighted 
GC data vectors. Classification of test samples I, J, and 
N are in agreement with sensory QDA results. How- 
ever, SIMCA placed sample B in category 1 and KNN 
placed 3 out of the 5-B samples into category 7. 
Reviewing the sensory QDA data, it was noted that 
samples placed in category 7 had a pronounced 
peppery note, whereas B samples belonged in cate- 
gories with no noticeable off-flavor notes. From this we 
conclude that SIMCA provided better classification 
results than KNN for analysis of GC data vectors. 
Conflicting classification results were also observed for 
samples D and P. SIMCA analysis of the autoscaled 

Table 9. Principal component analysis of the autoscaled gas 
chromatographic data vectors" 

Variance preserved 

Vector no. Eigenvalue Each Total 

1 15-080 47.1 47.1 
2 7.036 22-0 69.1 
3 4.293 13-4 82.5 
4 2.069 6-5 89.0 
5 1.179 3.7 92.7 
6 0.872 2.7 95.4 
7 0-570 1.8 97.2 
8 0.301 0.9 98.1 
9 0-238 0.7 98.9 

10 0.111 0-3 99-2 
11 0-076 0.2 99.5 
12 0.070 0.2 99.7 
13 0.025 0.1 99.7 
14 0.017 0.1 99.8 
15 0.013 00 99.8 
16 0.012 00 99.9 
17 0.008 0.0 99.9 
18 0.006 0.0 99.9 
19 0.005 00 99-9 
20 0.004 00 100.0 

a Only the first 20 eigenvectors are shown. 

GC data vectors placed sample D in category 3 and 
sample P in category 2. The same analysis of sensory 
QDA data vectors placed samples D in category 2 and 
sample P in category 3 (the exact reverse). Further 
review of SIMCA analyses of sensory QDA data 
vectors demonstrated that samples B, D, I, J, N, and P 
belong to overlapping or adjacent categories. There- 
fore, we concluded that they belong to a flavor property 
that is continuous. Quantitation by gas chroma- 
tography for specific individual components provided 
sufficient precision to subdivide this continuous flavor 
property into discrete subsections for classification (see 
Table 11). 
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Fig. 7. Principal component analysis of autoscaled gas chromatographic data; three-dimensional plot of first three eigenvectors. 
Sample codes labeled from A through P (see also Table 1). 
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Fig. 8. Nonlinear mapping profile of autoscaled GC data. 

Table lO. Results of feature-weighting programs on gas chromatographic data" 

Peak 

Variance weights 

New feature 

n o .  Identity Weight 

Fisher weights 

New feature 

Peak no. Identity Weight 

12 
6 

10 
19 
20 

8 
22 

9 
21 

5 
17 
16 
25 
26 
13 
14 
27 
31 
30 
15 
7 

24 
29 
23 

2 
28 

1 
18 
4 

32 
3 

11 

acetal 
ethyl acetate 
ethyl vinyl ketone 
hexanal 
ethyl butyrate 
1 -butanol 
cis-hexen- 1-ol 
1-penten-3-ol 
trans-2-hexenal 
2-methyl-3-buten-2-ol 
2-penten- 1-ol 
1-pentanol 
octanal 
1-octanol 
3-methyl- 1-butanol 
2-methyl- l-butanol 
cis-linalool oxide 
4-terpineol 
ethyl-3-hydroxyhexanoate 
NI ° 
2-methyl- 1-propanol 
NI 
linalool 
1-hexanol 
ethanol 
trans-linalool oxide 
acetaldehyde + MeOH 
cis-3-hexenal 
1-propanol 
a-terpineol 
acetone 
methyl butyrate 

168-300 
154.500 
98.910 
77.780 
76.620 
73.450 
65.850 
64.670 
63.440 
52.910 
49.010 
41.950 
38.580 
35.230 
33.070 
26.940 
25-630 
25.530 
25.020 
23.790 
23.330 
23.300 
20-560 
19.710 
19.160 
18.420 
15.380 
12.710 
10.730 
9.284 
7.711 
5-367 

6 ethyl acetate 
12 acetal 
29 linalool 
20 ethyl butyrate 

8 1-butanol 
21 trans-2-hexenal 
22 cis-3-hexen- 1-ol 
10 ethyl vinyl ketone 
26 1-octanol 

9 1-penten-3-ol 
5 2-methyl-3-buten-2-ol 

19 hexenal 
16 1-pentanol 
17 2-penten- 1-ol 
15 NI 
25 octanol 
13 3-methyl-l-butanol 
31 4-terpineol 
14 2-methyl-l-butanol 
27 cis-linalool oxide 
23 1-hexenol 

7 2-methyl- 1-propanol 
2 ethanol 

24 NI 
30 ethyl-3-hydroxyhexanoate 

1 acetaldehyde + MeOH 
28 trans-linalool oxide 

3 acetone 
4 1-propanol 

18 cis-3-hexanol 
32 a-terpineol 
11 methyl butyrate 

660.300 
524.600 
288.500 
287.200 
250.600 
238.400 
204.300 
198.700 
167.300 
151.500 
136.900 
134.600 
120.900 
113.600 
103.500 
94.020 
76.850 
76.150 
68.740 
66.050 
60.870 
51-820 
40.620 
37.220 
36.220 
33.060 
31.520 
30.070 
19.180 
17.770 
15.500 
7.169 

a See also Fig. 5. 
b Not identified. 
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Table 11. The SIMCA and KNN classification results on test set aatoscaled GC data vectors with variance-weighted program 

Test sample SIMCA KNN classification 

B 5/5 CATEGORY #1 2/5 CATEGORY #1 
D 5/5 CATEGORY #3 2/5 CATEGORY #2 
I 3/3 CATEGORY #7 3/3 CATEGORY #7 
J 3/3 CATEGORY #7 3/3 CATEGORY #7 
N 5/5 CATEGORY #8 5/5 CATEGORY #8 
P 5/5 CATEGORY #2 5/5 CATEGORY #2 

3/5 CATEGORY #7 
3/5 CATEGORY #5 

CONCLUSION 

The results of  the sensory QDA study of  natural orange 
aroma demonstrated that a well-trained sensory panel 
could effectively distinguish good quality from objec- 
tionable orange aromas. Secondly, whereas off-aroma 
samples were easily differentiated and placed into dis- 
tinct categories, those samples with pleasant or non- 
descript aromas were difficult to subdivide, and to 
place into distinct 'good quality' categories. With 
respect to sample classification of  QDA aroma data, 
the superior performance of  SIMCA over K N N  was 
noted. 

The best differentiation of good quality orange aromas 
was accomplished by the use of  SIMCA analysis of  the 
gas chromatographic data. Whereas the continuous 
flavor properties of  good quality NOAs could not be 
separated by QDA data, precise GC analytical data 
provided the means for this type of  resolution. 
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